Send to

Choose Destination
See comment in PubMed Commons below
Am J Physiol Heart Circ Physiol. 2006 Feb;290(2):H844-52. Epub 2005 Sep 23.

Mechanism of osmotic flow in a periodic fiber array.

Author information

Dept. of Biomedical and Mechanical Engineering, The City College of New York, CUNY, 138th St. at Convent Ave., New York, NY 10031, USA.


The classic analysis by Anderson and Malone (Biophys J 14: 957-982, 1974) of the osmotic flow across membranes with long circular cylindrical pores is extended to a fiber matrix layer wherein the confining boundaries are the fibers themselves. The equivalent of the well-known result for the reflection coefficient sigma0 = (1 - phi)2, where phi is the partition coefficient, is derived for a periodic fiber array of hexagonally ordered core proteins. The boundary value problem for the potential energy function describing the solute distribution surrounding each fiber is solved by defining an equivalent fluid annulus in which the pressures and osmotic forces are determined. This model is of special interest in the osmotic flow of water across a capillary wall, where recent experimental studies suggest that the endothelial glycocalyx is a quasiperiodic fiber array that serves as the primary molecular sieve for plasma proteins. Results for the reflection coefficient are presented in terms of two dimensionless numbers, alpha = a/R and beta = b/R, where a and b are the solute and fiber radii, respectively, and R is the outer radius of the fluid annulus. In general, the results differ substantially from the classic expression for a circular pore because of the large difference in the shape of the boundary along which the osmotic force is generated. However, as in circular pore theory, one finds that the reflection coefficients for osmosis and filtration are the same.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center