Temperature and Ca2+ dependence of [3H]ryanodine binding in the burbot (Lota lota L.) heart

Am J Physiol Regul Integr Comp Physiol. 2006 Feb;290(2):R345-51. doi: 10.1152/ajpregu.00443.2005. Epub 2005 Sep 22.

Abstract

Opening and closing of the cardiac ryanodine (Ry) receptor (RyR) are coordinated by the free intracellular Ca2+ concentration, thus making the Ca2+ binding properties of the RyR important for excitation-contraction coupling. Unlike mammalian cardiac RyRs, which lose their normal function at low temperatures, RyRs of ectothermic vertebrates remain operative at 2-4 degrees C, as indicated by Ry sensitivity of contractile force. To investigate the mechanisms of low temperature adaptation of ectothermic RyRs, we compared Ca2+-dependent kinetics of [3H]ryanodine binding in cardiac preparations of a fish (burbot, Lota lota) and a mammal (rat). The number of ventricular [3H]ryanodine binding sites determined at 20 degrees C was 1.54 times higher in rat than burbot heart (0.401 +/- 0.039 and 0.264 +/- 0.019 pmol/mg protein, respectively) (P < 0.02), while the binding affinity (Kd) for [3H]ryanodine was similar (3.38 +/- 0.63 and 4.38 +/- 1.14 nM for rat and burbot, respectively) (P = 0.47). The high-affinity [3H]ryanodine binding to burbot and rat cardiac preparations was tightly coordinated by the free Ca2+ concentration at both 20 degrees C and 2 degrees C and did not differ between the two species. Half-maximal [3H]ryanodine binding occurred at 0.191 +/- 0.027 microM and 0.164 +/- 0.034 microM Ca2+ for rat and at 0.212 +/- 0.035 microM and 0.188 +/- 0.039 microM Ca2+ for burbot (P = 0.65), at 2 degrees C and 20 degrees C, respectively. In two other fish species, rainbow trout (Oncorhynchus mykiss) and crucian carp (Carassius carassius), the Ca2+-binding affinity at 20 degrees C was 4.4 and 5.9 times lower, respectively, than in the burbot. At 20 degrees C, the rate of [3H]ryanodine binding to the high-affinity binding site was similar in rat and burbot but was drastically slowed in rat at 2 degrees C. At 2 degrees C, [3H]ryanodine failed to dissociate from rat cardiac RyRs, and at 10 degrees C and 20 degrees C, the rate of dissociation was two to three times slower in rat than burbot preparations. The latter finding is compatible with a channel gating mechanism, where the closing of the Ca2+ release channel is impaired or severely retarded by low temperature in rat but less so in burbot preparations. The stronger effect of low temperature on association and dissociation rate of [3H]ryanodine binding in rat compared with burbot suggests that RyRs of the ectothermic fish, unlike those of endothermic rat, are better able to open and close at low temperatures.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Calcium / metabolism*
  • Fishes / metabolism*
  • Male
  • Myocardium / metabolism*
  • Protein Binding
  • Rats
  • Rats, Wistar
  • Ryanodine / metabolism*
  • Ryanodine Receptor Calcium Release Channel / metabolism*
  • Temperature*

Substances

  • Ryanodine Receptor Calcium Release Channel
  • Ryanodine
  • Calcium