Format

Send to

Choose Destination
Eur J Neurosci. 2005 Sep;22(5):1120-6.

Serotonergic regulation of calcium-activated potassium currents in rodent prefrontal cortex.

Author information

1
Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI 48201, USA.

Abstract

In spite of a growing understanding of the actions of 5-hydroxytryptamine (5-HT) in the prefrontal cortex, the specific cellular mechanism used by 5-HT in this region remains poorly understood. Previous studies have shown that 5-HT inhibits the after hyper-polarization that follows a burst of spikes in pyramidal neurons. In the present study, we have used whole cell recordings in rat and mouse brain slices to re-examine this phenomenon with special emphasis on identifying the 5-HT receptor subtypes mediating this effect. Layer V pyramidal neurons display complex after hyper-polarizations that are mediated predominantly by calcium-activated potassium channels and involve two distinct currents known as medium after hyper-polarizating current and slow after hyper-polarizating current (I(sAHP)). Administration of 5-HT reduced the current underlying these after hyper-polarizations by selectively inhibiting I(sAHP). Pharmacological analysis of this response indicates that the main receptor responsible for this inhibition belongs to the 5-HT(2A) subtype. Thus, alpha-methyl-5-HT and 2,5-dimethoxy-4-bromoamphetamine (DOB) mimic the effect of 5-HT and the effect of these agonists is blocked by MDL 100 907. Similarly, administration of alpha-methyl-5-HT is without effect in slices derived from 5-HT(2A) receptor knockout mice. However, 5-HT(2A) receptor blockade only partially suppressed the ability of 5-HT to inhibit I(sAHP). This suggests the involvement of at least one more receptor subtype in this response. Consistent with this idea, administration of 5-carboxyamido-tryptamine, an agonist exhibiting no detectable affinity for 5-HT(2A) receptors, was also capable of suppressing I(sAHP). These results identify 5-HT(2A) receptors as being primarily involved in mediating the 5-HT-induced inhibition of I(sAHP) in prefrontal cortex, while also recognizing a contribution by an additional 5-HT receptor subtype.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center