Format

Send to

Choose Destination
Angew Chem Int Ed Engl. 2005 Oct 7;44(39):6282-304.

Engineering silicon oxide surfaces using self-assembled monolayers.

Author information

1
Laboratory of Supramolecular Chemistry and Technology, MESA+ Institute for Nanotechnology, University of Twente, P. O. Box 217, 7500 AE Enschede, The Netherlands.

Abstract

Although a molecular monolayer is only a few nanometers thick it can completely change the properties of a surface. Molecular monolayers can be readily prepared using the Langmuir-Blodgett methodology or by chemisorption on metal and oxide surfaces. This Review focuses on the use of chemisorbed self-assembled monolayers (SAMs) as a platform for the functionalization of silicon oxide surfaces. The controlled organization of molecules and molecular assemblies on silicon oxide will have a prominent place in "bottom-up" nanofabrication, which could revolutionize fields such as nanoelectronics and biotechnology in the near future. In recent years, self-assembled monolayers on silicon oxide have reached a high level of sophistication and have been combined with various lithographic patterning methods to develop new nanofabrication protocols and biological arrays. Nanoscale control over surface properties is of paramount importance to advance from 2D patterning to 3D fabrication.

PMID:
16172993
DOI:
10.1002/anie.200500633

LinkOut - more resources

Full Text Sources

Other Literature Sources

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center