Format

Send to

Choose Destination
Crit Rev Microbiol. 2005;31(3):137-44.

Mucosal immunity induced by pneumococcal glycoconjugate.

Author information

1
Center for Biologics and Research, Food and Drug Administration, Rockville, MD 20852, USA. lee_chi@cber.fda.gov

Abstract

Host defenses against Streptococcus pneumoniae involve opsonophagocytosis mediated by antibodies and complement. Because the pneumococcus is a respiratory pathogen, mucosal immunity may play an important role in the defense against infection. The mechanism for protection in mucosal immunity consists of induction of immunity by the activation of lymphocytes within the mucosal-associated lymphoid tissues, transport of antigen-specific B and T cells from inductive sites through bloodstream and distribute to distant mucosal effector sites. Secretory IgA is primarily involved in protection of mucosal surfaces. Mucosal immunization is an effective way of inducing immune responses at mucosal surfaces. Several mucosal vaccines are in various stages of development. A number of mucosal adjuvants have been proposed. CpG oligodeoxynucleotide (ODN) has been shown to be an effective mucosal adjuvant for various antigens. Mucosal immunity induced by intranasal immunization was studied with a pneumococcal glycoconjugate, using CpG ODN as adjuvant. Mice immunized with type 9V polysaccharide (PS) conjugated to inactivated pneumolysin (Ply) plus CpG produced high levels of 9V PS IgG and IgA antibodies compared to the group that received the conjugate alone. High levels of subclasses of IgGI, IgG2 and IgG3 antibodies were also observed in sera of mice immunized with 9V PS-Ply plus CpG. In addition, high IgG and IgA antibody responses were observed in sera of young mice immunized with 9V PS-Ply plus CpG or the conjugate plus non-CpG compared with the group received the conjugate alone. These results reveal that mucosal immunization with pneumococcal glycoconjugate using CpG as adjuvant can confer protective immunity against pneumococcal infection.

PMID:
16170904
DOI:
10.1080/10408410591005093
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Taylor & Francis
Loading ...
Support Center