Format

Send to

Choose Destination
Science. 2005 Sep 16;309(5742):1854-7.

Achieving stability of lipopolysaccharide-induced NF-kappaB activation.

Author information

1
Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.

Abstract

The activation dynamics of the transcription factor NF-kappaB exhibit damped oscillatory behavior when cells are stimulated by tumor necrosis factor-alpha (TNFalpha) but stable behavior when stimulated by lipopolysaccharide (LPS). LPS binding to Toll-like receptor 4 (TLR4) causes activation of NF-kappaB that requires two downstream pathways, each of which when isolated exhibits damped oscillatory behavior. Computational modeling of the two TLR4-dependent signaling pathways suggests that one pathway requires a time delay to establish early anti-phase activation of NF-kappaB by the two pathways. The MyD88-independent pathway required Inferon regulatory factor 3-dependent expression of TNFalpha to activate NF-kappaB, and the time required for TNFalpha synthesis established the delay.

PMID:
16166516
DOI:
10.1126/science.1112304
[Indexed for MEDLINE]
Free full text

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms

Substances

Grant support

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center