Format

Send to

Choose Destination
Mol Biol Evol. 2006 Jan;23(1):121-36. Epub 2005 Sep 14.

The "fish-specific" Hox cluster duplication is coincident with the origin of teleosts.

Author information

1
Department of Ecology and Evolutionary Biology, Yale University, USA. karen.crow@yale.edu

Abstract

The Hox gene complement of zebrafish, medaka, and fugu differs from that of other gnathostome vertebrates. These fishes have seven to eight Hox clusters compared to the four Hox clusters described in sarcopterygians and shark. The clusters in different teleost lineages are orthologous, implying that a "fish-specific" Hox cluster duplication has occurred in the stem lineage leading to the most recent common ancestor of zebrafish and fugu. The timing of this event, however, is unknown. To address this question, we sequenced four Hox genes from taxa representing basal actinopterygian and teleost lineages and compared them to known sequences from shark, coelacanth, zebrafish, and other teleosts. The resulting gene genealogies suggest that the fish-specific Hox cluster duplication occurred coincident with the origin of crown group teleosts. In addition, we obtained evidence for an independent Hox cluster duplication in the sturgeon lineage (Acipenseriformes). Finally, results from HoxA11 suggest that duplicated Hox genes have experienced diversifying selection immediately after the duplication event. Taken together, these results support the notion that the duplicated Hox genes of teleosts were causally relevant to adaptive evolution during the initial teleost radiation.

PMID:
16162861
DOI:
10.1093/molbev/msj020
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center