Format

Send to

Choose Destination
See comment in PubMed Commons below
Appl Opt. 2005 Sep 10;44(26):5434-45.

Depolarization of diffusely reflecting man-made objects.

Author information

  • 1Optical Sciences Center, University of Arizona, 1630 East University Boulevard, Tucson, Arizona 85721, USA. brain.deboo@goodrich.com

Abstract

The polarization properties of light scattered or diffusely reflected from seven different man-made samples are studied. For each diffusely reflecting sample an in-plane Mueller matrix bidirectional reflectance distribution function is measured at a fixed bistatic angle using a Mueller matrix imaging polarimeter. The measured profile of depolarization index with changing scattering geometry for most samples is well approximated by an inverted Gaussian function. Depolarization is minimum for specular reflection and increases asymptotically in a Gaussian fashion as the angles of incidence and scatter increase. Parameters of the Gaussian profiles fitted to the depolarization data are used to compare samples. The dependence of depolarization on the incident polarization state is compared for each Stokes basis vector: horizontal, vertical, 45 degrees, 135 degrees, and right- and left-circular polarized light. Linear states exhibit similar depolarization profiles that typically differ in value by less than 0.06 (where 1.0 indicates complete depolarization). Circular polarization states are depolarized more than linear states for all samples tested, with the output degree of polarization reduced from that of linear states by as much as 0.15. The depolarization difference between linear and circular states varies significantly between samples.

PMID:
16161657
[PubMed]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Optical Society of America
    Loading ...
    Support Center