Format

Send to

Choose Destination
See comment in PubMed Commons below
Med Decis Making. 2005 Sep-Oct;25(5):511-9.

Cost-effectiveness analysis of treatments for chronic disease: using R to incorporate time dependency of treatment response.

Author information

1
Centre for Health Economics, University of York, Centre for Health Economics, York, UK Y010 5DD.

Abstract

When constructing decision-analytic models to evaluate the cost-effectiveness of alternative treatments, we often need to extrapolate beyond the available experimental data, as these typically relate to a limited period starting from the initiation of a new treatment or the diagnosis of the current disease state. We may also be required to extrapolate beyond the available experimental evidence to compare potential treatment sequences. Markov models are often used for this extrapolation. These models have the defining assumption that future transition probabilities are independent of past transitions. This means that, in general, transition probabilities cannot be conditional of the time spent in a given state. Where data exist to show that the risks of transition are conditional on the time spent in the treatment state, the simplifying Markov assumption can result in a loss in the model's "face validity," and misleading results might be generated. Several methods are available to incorporate time dependency into transition probabilities based on standard methods and software. These include the inclusion of tunnel states in Markov models and patient-level simulation, where a series of individual patients are simulated. This article considers the features and limitations of these methods and also describes a novel approach to building time dependency into a Markov model by incorporating an additional time dimension resulting in a "semi-Markov" model. An example of the implementation of such a model, using the R statistical programming language, is illustrated using a cost-effectiveness model for new epilepsy therapies.

PMID:
16160207
DOI:
10.1177/0272989X05280562
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Atypon
    Loading ...
    Support Center