Format

Send to

Choose Destination
Circulation. 2005 Aug 30;112(9 Suppl):I51-6.

Does the beta2-agonist clenbuterol help to maintain myocardial potential to recover during mechanical unloading?

Author information

1
Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.

Abstract

OBJECTIVE:

Chronic mechanical unloading induces left ventricular (LV) atrophy, which may impair functional recovery during support with an LV-assist device. Clenbuterol, a beta2-adrenergic receptor (AR) agonist, is known to induce myocardial hypertrophy and might prevent LV atrophy during LV unloading. Furthermore, beta2-AR stimulation is reported to improve Ca2+ handling and contribute to antiapoptosis. However, there is little information on the effects of clenbuterol during LV unloading.

METHODS AND RESULTS:

We investigated LV atrophy and function after LV unloading produced by heterotopic heart transplantation in isogenic rats. After transplantation, rats were randomized to 1 of 2 groups (n=10 each). The clenbuterol group received 2 mg.kg(-1).d(-1) of the drug for 2 weeks; the control group received normal saline. The weight of unloaded control hearts was 48% less than that of host hearts after 2 weeks of unloading. Clenbuterol significantly increased the weight of the host hearts but did not prevent unloading-induced LV atrophy. Papillary muscles were isolated and stimulated, and there was no difference in developed tension between the 2 groups. However, the inotropic response to the beta-AR agonist isoproterenol significantly improved in the clenbuterol group. The mRNA expression of myocardial sarco(endo)plasmic reticulum Ca2+-ATPase 2a (SERCA2a) and fetal gene shift (myosin heavy chain [MHC] mRNA isozyme) was also significantly improved by clenbuterol treatment. There was no difference in beta1-AR mRNA expression between the 2 groups. In contrast, beta2-AR mRNA was significantly decreased in the clenbuterol-treated, unloaded heart. This indicates that clenbuterol may downregulate beta2-ARs. In the evaluation of apoptosis, mRNA expression of caspase-3, which is the central pathway for apoptosis, tended to be better in the clenbuterol group.

CONCLUSIONS:

During complete LV unloading, clenbuterol did not prevent myocardial atrophy but improved gene expression (SERCA2a, beta-MHC) and beta-adrenergic responsiveness and potentially prevented myocardial apoptosis. However, chronic administration of clenbuterol may be associated with downregulation of beta2-ARs.

[Indexed for MEDLINE]

Publication type, MeSH terms, Substances

Publication type

MeSH terms

Substances

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center