Send to

Choose Destination
J Am Chem Soc. 2005 Sep 21;127(37):12847-55.

A gadolinium chelate for detection of beta-glucuronidase: a self-immolative approach.

Author information

Department of Chemistry, Northwestern University, Evanston, Illinois 60201, USA.


New classes of physiologically responsive magnetic resonance (MR) contrast agents are being developed that are activated by enzymes, secondary messengers, pH, and temperature. To this end, we have prepared a new class of enzyme-activated MR contrast agents using a self-immolative mechanism and investigated the properties of these agents using novel in vitro assays. We have synthesized in nine steps a Gd(III) agent 1 that is activated by the oncologically significant beta-glucuronidase. 1 consists of Gd(III)DO3A (DO3A = 1,4,7-tricarboxymethylene-1,4,7,10-tetraazacyclododecane) bearing a pendant beta-glucuronic acid moiety connected by a self-immolative linker to the macrocycle. LC-MS analysis reveals that 1 is enzymatically processed as predicted by bovine liver beta-glucuronidase, generating 2-aminoethylGdDO3A, 2. Compound 2 was prepared independently in a four-step synthetic procedure. Complex 1 displays a decrease in relaxivity upon titration with bicarbonate anion. The relaxivity increases when 1 is converted to 2 in a buffer mimicking in vivo anion concentrations (Parker, D. In Crown Compounds: Towards Future Applications; Cooper, S. R., Ed.; VCH: New York, 1992; pp 51-67) by 17%, while the relaxivity decreases by 27% for the same experiment in human blood serum. Hydrolytic kinetics catalyzed by bovine liver beta-glucuronidase at interstitial pH = 7.4 fit the Michaelis-Menten model with k cat/Km = 74.9 +/- 10.9 M(-1) s(-1). Monitoring of bulk water proton T1 during incubation with enzyme shows an increase in T1 that mirrors results obtained through the relaxivity measurements of compounds 1 and 2.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center