Format

Send to

Choose Destination
Oncogene. 2006 Jan 5;25(1):91-102.

Transcriptional targets of hepatocyte growth factor signaling and Ki-ras oncogene activation in colorectal cancer.

Author information

1
Ontario Cancer Institute/Princess Margaret Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada.

Abstract

Both Ki-ras mutation and hepatocyte growth factor (HGF) receptor Met overexpression occur at high frequency in colon cancer. This study investigates the transcriptional changes induced by Ki-ras oncogene and HGF/Met signaling activation in colon cancer cell lines in vitro and in vivo. The model system used in these studies included the DLD-1 colon cancer cell line with a mutated Ki-ras allele, and the DKO-4 cell line generated from DLD-1, with its mutant Ki-ras allele inactivated by targeted disruption. These cell lines were transduced with cDNAs of full-length Met receptor. Microarray transcriptional profiling was conducted on cell lines stimulated with HGF, as well as on tumor xenograft tissues. Overlapping genes between in vitro and in vivo microarray data sets were selected as a subset of HGF/Met and Ki-ras oncogene-regulated targets. Using the Online Predicted Human Interaction Database, novel HGF/Met and Ki-ras regulated proteins with putative functional linkage were identified. Novel proteins identified included histone acetyltransferase 1, phosphoribosyl pyrophosphate synthetase 2, chaperonin containing TCP1, subunit 8, CSE1 chromosome segregation 1-like (yeast)/cellular apoptosis susceptibility (mammals), CCR4-NOT transcription complex, subunit 8, and cyclin H. Transcript levels for these Met-signaling targets were correlated with Met expression levels, and were significantly elevated in both primary and metastatic human colorectal cancer samples compared to normal colorectal mucosa. These genes represent novel Met and/or Ki-ras transcriptionally coregulated genes with a high degree of validation in human colorectal cancers.

PMID:
16158056
DOI:
10.1038/sj.onc.1209005
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center