Format

Send to

Choose Destination
See comment in PubMed Commons below
J Exp Bot. 2005 Nov;56(421):2897-905. Epub 2005 Sep 12.

Mechanisms of the light-dependent induction of cell death in tobacco plants with delayed senescence.

Author information

1
Department of Biology, University College London, Gower Street, London WC1E 6BT, UK. a.wingler@ucl.ac.uk

Abstract

The relationship between leaf senescence and cell death was investigated using tobacco with delayed senescence due to auto-regulated production of cytokinin (SAG12-IPT). Although leaf senescence ultimately results in cell death, the results show that senescence and cell death can be uncoupled: in nutrient-deficient, but not in fertilized SAG12-IPT plants, necrotic lesions were detected in old, but otherwise green leaves. By contrast, wild-type leaves of the same age were yellow, but not necrotic. Chlorophyll fluorescence analysis revealed an over-reduction of the electron transport chain in old SAG12-IPT leaves, in combination with characteristic spatial patterns of minimum fluorescence (F0) quantum efficiency of open photosystem II centres (F(v)/F(m)) and non-photochemical quenching (NPQ), as determined by fluorescence imaging. The same patterns of F0, F(v)/F(m), and NPQ were induced by incubation of leaf discs from nutrient-deficient SAG12-IPT plants under illumination, but not in the dark, indicating that light-dependent reactions were responsible for the cell death. RT-PCR analysis showed that the pathogenesis-related (PR) genes PR-1b and PR-Q were strongly induced in old SAG12-IPT tobacco leaves with necrotic lesions. In addition, the ethylene-synthesis gene ACO was induced before lesions became visible in SAG12-IPT. It is proposed that over-reduction of the electron transport chain in combination with decreased electron consumption due to nutrient-deficiency led to oxidative stress, which, mediated by ethylene formation, can induce PR gene expression and hypersensitive cell death. Probably as a consequence of inefficient nutrient mobilization, flower development was prematurely aborted and reproduction thereby impaired in nutrient-deficient SAG12-IPT plants.

PMID:
16157651
DOI:
10.1093/jxb/eri284
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems
    Loading ...
    Support Center