Send to

Choose Destination
Biochemistry. 2005 Sep 20;44(37):12614-9.

An experiment-based algorithm for predicting the partitioning of unfolded peptides into phosphatidylcholine bilayer interfaces.

Author information

Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA.


Knowing the partitioning free energy of unfolded polypeptides into membrane interfaces is necessary for understanding membrane protein stability and for designing antimicrobial and other peptides. Experiment-based whole-residue free-energy (hydropathy) scales for amino acids in unfolded peptides, derived from the partitioning of host-guest pentapeptides (Ac-WLXLL) into the interfaces of phosphatidylcholine bilayers and into n-octanol, have been determined by W. C. Wimley, S. H. White, and colleagues [(1996) Nat. Struc. Biol. 3, 842; Wimley, W. C. et al. (1996) Biochemistry 35, 5109]. These scales offer the possibility of computing absolute partitioning free energies of unfolded peptides given only their amino acid sequences. However, the scales are incomplete, because partitioning free energies of N- and C-terminal groups are missing. To complete the scales, we have measured the pH-dependent partitioning of the host-guest pentapeptide variants AcWL-X-LL-NH(2) and WL-X-LL-NH(2) (X = G or W) into palmitoyloleoylphosphatidylcholine (POPC) bilayer interfaces and n-octanol. These measurements, in combination with the earlier ones, lead to hydrophobicity scale values for protonation, deprotonation, or acetylation of the N terminus and protonation, deprotonation, or amidation of the C terminus. A surprising finding is that a charged N terminus has a much smaller effect on bilayer partitioning than a charged C terminus. We present a simple algorithm for computing the absolute partitioning free energies of unfolded peptides into the phosphatidylcholine bilayer interface.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center