Send to

Choose Destination
See comment in PubMed Commons below
Biochemistry. 2005 Sep 20;44(37):12307-15.

Sequence-dependent peptide binding orientation by the molecular chaperone DnaK.

Author information

  • 1Department of Physiology and Biophysics, University of California, Irvine, California 92697, USA.


Hsp70-class molecular chaperones interact with diverse polypeptide substrates, but there is limited information on the structures of different Hsp70-peptide complexes. We have used a site-directed fluorescence labeling and quenching strategy to investigate the orientation of different peptides bound to DnaK from Escherichia coli. DnaK was selectively labeled on opposite sides of the substrate-binding domain (SBD) with the fluorescent probe bimane, and the ability of peptides containing N- or C-terminal tryptophan residues to quench bimane fluorescence was measured. Tryptophan-labeled derivatives of the model peptide NRLLLTG bound with the same forward orientation previously observed in the crystal structure of the DnaK(SBD)-NRLLLTG complex. Derivatives of this peptide containing arginine in the C-terminal rather than N-terminal region, NTLLLRG, also bound in the forward direction indicating that charged residues in the flanking regions of the peptide are not the major determinant of peptide binding orientation. We also tested peptides having proline in one (ELPLVKI) or two (ELPPVKI) central positions. Tryptophan derivatives of each of these peptides bound with a strong preference for the reverse direction relative to that observed for the NRLLLTG and NTLLLRG peptides. Computer modeling the peptides NRLLLTG and ELPPVKI in both the forward and reverse orientations into the DnaK(SBD) indicated that differential hydrogen-bonding patterns and steric constraints of the central peptide residues are likely causes for differences in their binding orientations. These findings establish that DnaK is able to bind substrates in both forward and reverse orientations and suggest that the central residues of the peptide are the major determinants of directional preference.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center