Format

Send to

Choose Destination
See comment in PubMed Commons below
Magn Reson Med. 2005 Oct;54(4):929-36.

In vivo 3T spiral imaging based multi-slice T(1rho) mapping of knee cartilage in osteoarthritis.

Author information

1
Musculo-Skeletal Quantitative Imaging Research (MQIR), Department of Radiology, University of California, San Francisco (UCSF), 94107, USA. xiaojuan.li@radiology.ucsf.edu

Abstract

T(1rho) describes the spin-lattice relaxation in the rotating frame and has been proposed for detecting damage to the cartilage collagen-proteoglycan matrix in osteoarthritis. In this study, a multi-slice T(1rho) imaging method for knee cartilage was developed using spin-lock techniques and a spiral imaging sequence. The adverse effect of T(1) regrowth during the multi-slice acquisition was eliminated by RF cycling. Agarose phantoms with different concentrations, 10 healthy volunteers, and 9 osteoarthritis patients were scanned at 3T. T(1rho) values decreased as agarose concentration increased. T(1rho) values obtained with imaging methods were compared with those obtained with spectroscopic methods. T(1rho) values obtained during multi-slice acquisition were validated with those obtained in a single slice acquisition. Reproducibility was assessed using the average coefficient of variation of median T(1rho), which was 0.68% in phantoms and 4.8% in healthy volunteers. There was a significant difference (P = 0.002) in the average T(1rho) within patellar and femoral cartilage between controls (45.04 +/- 2.59 ms) and osteoarthritis patients (53.06 +/- 4.60 ms). A significant correlation was found between T(1rho) and T(2); however, the difference of T(2) was not significant between controls and osteoarthritis patients. The results suggest that T(1rho) relaxation times may be a promising clinical tool for osteoarthritis detection and treatment monitoring.

PMID:
16155867
DOI:
10.1002/mrm.20609
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center