Cyclic nucleotide regulation of store-operated Ca2+ influx in airway smooth muscle

Am J Physiol Lung Cell Mol Physiol. 2006 Feb;290(2):L278-83. doi: 10.1152/ajplung.00188.2005. Epub 2005 Sep 9.

Abstract

Sarcoplasmic reticulum (SR) Ca2+ release and plasma membrane Ca2+ influx are key to intracellular Ca2+ ([Ca2+]i) regulation in airway smooth muscle (ASM). SR Ca2+ depletion triggers influx via store-operated Ca2+ channels (SOCC) for SR replenishment. Several clinically relevant bronchodilators mediate their effect via cyclic nucleotides (cAMP, cGMP). We examined the effect of cyclic nucleotides on SOCC-mediated Ca2+ influx in enzymatically dissociated porcine ASM cells. SR Ca2+ was depleted by 1 microM cyclopiazonic acid in 0 extracellular Ca2+ ([Ca2+]o), nifedipine, and KCl (preventing Ca2+ influx through L-type and SOCC channels). SOCC was then activated by reintroduction of [Ca2+]o and characterized by several techniques. We examined cAMP effects on SOCC by activating SOCC in the presence of 1 microM isoproterenol or 100 microM dibutryl cAMP (cell-permeant cAMP analog), whereas we examined cGMP effects using 1 microM (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA-NO nitric oxide donor) or 100 microM 8-bromoguanosine 3',5'-cyclic monophosphate (cell-permeant cGMP analog). The role of protein kinases A and G was examined by preexposure to 100 nM KT-5720 and 500 nM KT-5823, respectively. SOCC-mediated Ca2+ influx was dependent on the extent of SR Ca2+ depletion, sensitive to Ni2+ and La3+, but not inhibitors of voltage-gated influx channels. cAMP as well as cGMP potently inhibited Ca2+ influx, predominantly via their respective protein kinases. Additionally, cAMP cross-activation of protein kinase G contributed to SOCC inhibition. These data demonstrate that a Ni2+/La3+-sensitive Ca2+ influx in ASM triggered by SR Ca2+ depletion is inhibited by cAMP and cGMP via a protein kinase mechanism. Such inhibition may play a role in the bronchodilatory response of ASM to clinically relevant drugs (e.g., beta-agonists vs. nitric oxide).

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Calcium / metabolism*
  • Calcium Channels / drug effects
  • Calcium Channels / metabolism
  • Carbazoles / pharmacology
  • Cyclic AMP / pharmacology*
  • Cyclic AMP-Dependent Protein Kinases / antagonists & inhibitors
  • Cyclic AMP-Dependent Protein Kinases / physiology
  • Cyclic GMP / pharmacology*
  • Cyclic GMP-Dependent Protein Kinases / antagonists & inhibitors
  • Cyclic GMP-Dependent Protein Kinases / physiology
  • Indoles / pharmacology
  • Muscle, Smooth / drug effects
  • Muscle, Smooth / metabolism*
  • Pyrroles / pharmacology
  • Swine
  • Trachea / metabolism

Substances

  • Calcium Channels
  • Carbazoles
  • Indoles
  • Pyrroles
  • KT 5823
  • KT 5720
  • Cyclic AMP
  • Cyclic AMP-Dependent Protein Kinases
  • Cyclic GMP-Dependent Protein Kinases
  • Cyclic GMP
  • Calcium
  • cyclopiazonic acid