Send to

Choose Destination
Evolution. 2005 Jul;59(7):1579-87.

Locomotor compensation creates a mismatch between laboratory and field estimates of escape speed in lizards: a cautionary tale for performance-to-fitness studies.

Author information

Department of Ecology and Evolutionary Biology, 310 Dinwiddie Hall, Tulane University, New Orleans, Louisiana 70118, USA.


A key assumption in evolutionary studies of locomotor adaptation is that standard laboratory measures of performance accurately reflect what animals do under natural circumstances. One widely examined measure of performance is maximum sprint speed, which is believed to be important for eluding predators, capturing prey, and defending territories. Previous studies linking maximum sprint speed to fitness have focused on laboratory measurements, and we suggest that such analyses may be appropriate for some species and intraspecific classes, but not others. We provide evidence for a general inverse relationship between maximum laboratory sprint speed and the percentage of maximum capacity that animals use when escaping from a threat in the field (the model of locomotor compensation). Further, absolute values of field escape speed and maximum laboratory speed are not significantly related when comparing across a diverse group of Anolis and lacertid lizards. We show that this pattern of locomotor compensation holds both within (i.e., among intraspecific classes) and among lizard species (with some exceptions). We propose a simple method of plotting field escape speed (y-axis) versus maximum laboratory speed (x-axis) among species and/or intraspecific classes that allows researchers to determine whether their study organisms are good candidates for relating laboratory performance to fitness. We suggest that species that reside directly on, or near the "best fitness line" (field escape speed = maximum laboratory speed) are most likely to bear fruit for such studies.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center