Format

Send to

Choose Destination
See comment in PubMed Commons below
Planta. 2006 Jan;223(2):223-36. Epub 2005 Sep 3.

Cell cycle-dependent changes in Golgi stacks, vacuoles, clathrin-coated vesicles and multivesicular bodies in meristematic cells of Arabidopsis thaliana: a quantitative and spatial analysis.

Author information

  • 1Department of Molecular, Cellular and Developmental Biology, University of Colorado, UCB 347, Boulder, CO 80309-0347, USA. seguism@btc.upv.es

Abstract

Cytokinesis in plants involves both the formation of a new wall and the partitioning of organelles between the daughter cells. To characterize the cellular changes that accompany the latter process, we have quantitatively analyzed the cell cycle-dependent changes in cell architecture of shoot apical meristem cells of Arabidopsis thaliana. For this analysis, the cells were preserved by high-pressure freezing and freeze-substitution techniques, and their Golgi stacks, multivesicular bodies, vacuoles and clathrin-coated vesicles (CCVs) characterized by means of serial thin section reconstructions, stereology and electron tomography techniques. Interphase cells possess approximately 35 Golgi stacks, and this number doubles during G2 immediately prior to mitosis. At the onset of cytokinesis, the stacks concentrate around the periphery of the growing cell plate, but do not orient towards the cell plate. Interphase cells contain approximately 18 multivesicular bodies, most of which are located close to a Golgi stack. During late cytokinesis, the appearance of a second group of cell plate-associated multivesicular bodies coincides with the onset of CCV formation at the cell plate. During this period a 4x increase in CCVs is paralleled by a doubling in number and a 4x increase in multivesicular bodies volume. The vacuole system also undergoes major changes in organization, size, and volume, with the most notable change seen during early telophase cytokinesis. In particular, the vacuoles form sausage-like tubular compartments with a 50% reduced surface area and an 80% reduced volume compared to prometaphase cells. We postulate that this transient reduction in vacuole volume during early telophase provides a means for increasing the volume of the cytosol to accommodate the forming phragmoplast microtubule array and associated cell plate-forming structures.

PMID:
16151846
DOI:
10.1007/s00425-005-0082-2
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Support Center