Format

Send to

Choose Destination
See comment in PubMed Commons below
Front Biosci. 2006 Jan 1;11:89-112.

HIV-1 inactivation by nucleic acid aptamers.

Author information

1
Department of Biology, Indiana University, Bloomington, IN 47405, USA.

Abstract

Although developments in small-molecule therapeutics for HIV-1 have been dramatic in recent years, the rapid selection of drug-resistant viral strains and the adverse side effects associated with long-term exposure to current treatments propel continued exploration of alternative anti-HIV-1 agents. Non-coding nucleic acids have emerged as potent inhibitors that dramatically suppress viral function both in vitro and in cell culture. In particular, RNA and DNA aptamers inhibit HIV-1 function by directly interfering with essential proteins at critical stages in the viral replication cycle (Figure 1). Their antiviral efficacy is expected to be a function, in part, of the biochemical properties of the aptamer-target interaction. Accordingly, we present an overview of biochemical and cell culture analyses of the expanding list of aptamers targeting HIV-1. Our discussion focuses on the inhibition of viral enzymes (reverse transcription, proteolytic processing, and chromosomal integration), viral expression (Rev/RRE and Tat/TAR), viral packaging (p55Gag, matrix and nucleocapsid), and viral entry (gp120) (Table 1). Additional nucleic acid-based strategies for inactivation of HIV-1 function (including RNAi, antisense, and ribozymes) have also demonstrated their utility. These approaches are reviewed in other chapters of this volume and elsewhere.

PMID:
16146716
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Frontiers in Bioscience
    Loading ...
    Support Center