Send to

Choose Destination
See comment in PubMed Commons below
Brain Res Bull. 2005 Sep 15;66(4-6):365-70. Epub 2005 Feb 25.

Cognitive and emotional functions of the teleost fish cerebellum.

Author information

Laboratory of Psychobiology, University of Sevilla, Campus Santiago Ramón y Cajal, Avenida de San Francisco Javier, Spain.


Increasing experimental and neuropsychological evidence indicates that the cerebellum of humans and other mammals, traditionally associated with motor control, is implicated in a variety of cognitive and emotional functions. For example, the cerebellum has been identified as an essential structure in different learning processes, ranging from simple forms of associative, sensory-motor learning and emotional conditioning, to more complex, higher-order processes such as spatial cognition. Although neuroanatomical and neurophysiological data indicate that the organization of the cerebellum is notably well conserved in vertebrates, little is actually known about the cerebellar contribution to processes besides the motor domain in non-mammals. In this work, we analyzed the involvement of the teleost fish cerebellum on classical conditioning of motor and emotional responses and on spatial cognition. Cerebellum lesions in goldfish impair the classical conditioning of a simple eye-retraction response analogous to the eyeblink conditioning described in mammals. Single unit extracellular electrophysiological recording and cytochrome oxidase histochemistry also reveal the involvement of the teleost fish cerebellum in classical conditioning. Autonomic emotional responses (e.g., heart rate classical conditioning) are also impaired by cerebellum lesions in goldfish. Furthermore, goldfish with cerebellum lesions present a severe impairment in spatial cognition. In contrast, cerebellum lesions do not produce any observable motor deficit as indicated by the swimming activity or obstacle avoidance and do not interfere with the occurrence of unconditioned motor or emotional responses. These data indicate that the functional involvement of the teleost cerebellum in learning and memory is strikingly similar to mammals and suggest that the cognitive and emotional functions of the cerebellum may have evolved early in vertebrate evolution, having been conserved along the phylogenetic history of the extant vertebrate groups.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center