Format

Send to

Choose Destination
Photosynth Res. 2004;82(3):289-99.

Involvement of tetrapyrroles in inter-organellar signaling in plants and algae.

Author information

1
Institut fuer Biologie III, Albert-Ludwigs-Universitaet, Schaenzlestrasse 1, 79104, Freiburg, Germany, beck@uni-freiburg.de.

Abstract

For the assembly of a functional chloroplast, the coordinated expression of genes distributed between nucleus and chloroplasts is a prerequisite. While the nucleus plays an undisputed dominant role in controling biogenesis and functioning of chloroplasts, plastidic signals appear to control the expression of a subset of nuclear genes; the majority of which encodes chloroplast constituents. Tetrapyrrole biosynthesis intermediates are attractive candidates for one type of plastidic signal ever since an involvement of Mg-porphyrins in signaling from chloroplast to nucleus was first demonstrated in Chlamydomonas reinhardtii. Since then, Mg-protoporphyrin IX has been shown to exert a regulatory function on nuclear genes in higher plants as well. Here we review evidence for the role played by tetrapyrroles in inter-organellar communication. We also report on a screening for nuclear genes that may be subject to regulation by tetrapyrroles. This revealed that (i) >HEMA, the gene encoding the first enzyme specific for porphyrin biosynthesis is induced by Mg-protoporphyrin IX, (ii) several nuclear HSP70 genes are regulated by tetrapyrroles. Members of the gene family induced by the feeding of Mg-rotoporphyrin IX encode chaperones located in either the chloroplast or the cytosol. These results point to an important role of Mg-tetrapyrroles as plastidic signal in controling the initial step of porphyrin biosynthesis, and the synthesis of chaperones involved in protein folding in cytosol/stroma, protein transport into organelles, and the stress response.

PMID:
16143841
DOI:
10.1007/s11120-004-2160-x

Supplemental Content

Loading ...
Support Center