Send to

Choose Destination
See comment in PubMed Commons below
J Neural Eng. 2005 Sep;2(3):S164-79. Epub 2005 Aug 31.

Sensory vestibular contributions to constructing internal models of self-motion.

Author information

Department of Anatomy and Neurobiology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8108, St Louis, MO 63110, USA.


The ability to navigate in the world and execute appropriate behavioral and motor responses depends critically on our capacity to construct an accurate internal representation of our current motion and orientation in space. Vestibular sensory signals are among those that may make an essential contribution to the construction of such 'internal models'. Movement in a gravitational environment represents a situation where the construction of internal models becomes particularly important because the otolith organs, like any linear accelerometer, sense inertial and gravitational accelerations equivalently. Otolith afferents thus provide inherently ambiguous motion information, as they respond identically to translation and head reorientation relative to gravity. Resolution of this ambiguity requires the nonlinear integration of linear acceleration and angular velocity cues, as predicted by the physical equations of motion. Here, we summarize evidence that during translations and tilts from upright the firing rates of brainstem and cerebellar neurons encode a combination of dynamically processed semicircular canal and otolith signals appropriate to construct an internal model representation of the computations required for inertial motion detection.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for IOP Publishing Ltd.
    Loading ...
    Support Center