Format

Send to

Choose Destination
See comment in PubMed Commons below
Mol Cell Biol. 2005 Sep;25(18):8285-98.

PKD2 functions as an epidermal growth factor-activated plasma membrane channel.

Author information

1
Department of Cell Biology, University of Oklahoma Health Sciences Center, 941 Stanton L. Young Boulevard, Oklahoma City, OK 73104, USA.

Abstract

PKD2, or polycystin 2, the product of the gene mutated in type 2 autosomal dominant polycystic kidney disease, belongs to the transient receptor potential channel superfamily and has been shown to function as a nonselective cation channel in the plasma membrane. However, the mechanism of PKD2 activation remains elusive. We show that PKD2 overexpression increases epidermal growth factor (EGF)-induced inward currents in LLC-PK(1) kidney epithelial cells, while the knockdown of endogenous PKD2 by RNA interference or the expression of a pathogenic missense variant, PKD2-D511V, blunts the EGF-induced response. Pharmacological experiments indicate that the EGF-induced activation of PKD2 occurs independently of store depletion but requires the activity of phospholipase C (PLC) and phosphoinositide 3-kinase (PI3K). Pipette infusion of purified phosphatidylinositol-4,5-bisphosphate (PIP(2)) suppresses the PKD2-mediated effect on EGF-induced conductance, while pipette infusion of phosphatidylinositol-3,4,5-trisphosphate (PIP(3)) does not have any effect on this conductance. Overexpression of type Ialpha phosphatidylinositol-4-phosphate 5-kinase [PIP(5)Kalpha], which catalyzes the formation of PIP(2), suppresses EGF-induced currents. Biochemical experiments show that PKD2 physically interacts with PLC-gamma2 and EGF receptor (EGFR) in transfected HEK293T cells and colocalizes with EGFR and PIP(2) in the primary cilium of LLC-PK(1) cells. We propose that plasma membrane PKD2 is under negative regulation by PIP(2). EGF may reduce the threshold of PKD2 activation by mechanical and other stimuli by releasing it from PIP(2)-mediated inhibition.

PMID:
16135816
PMCID:
PMC1234340
DOI:
10.1128/MCB.25.18.8285-8298.2005
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center