Send to

Choose Destination
Carcinogenesis. 2006 Feb;27(2):205-15. Epub 2005 Aug 25.

Proteasome mediated degradation of Id-1 is associated with TNFalpha-induced apoptosis in prostate cancer cells.

Author information

Cancer Biology Group, Department of Anatomy, Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, SAR, China.


Overexpression of the helix-loop-helix protein Id-1 has been reported in over 20 types of cancer. While a number of factors have been demonstrated to regulate Id-1 gene transcription, little is known about the mechanisms responsible for its degradation. In this study, we have demonstrated that Id-1 protein stability was regulated by TNFalpha in prostate cancer cells. We found that exposure of prostate cancer cell lines, DU145 and PC-3, to TNFalpha resulted in a rapid and significant downregulation of the Id-1 protein level. The fact that neither the Id-1 promoter activity nor the Id-1 mRNA level was affected by the TNFalpha treatment suggested that the decrease in Id-1 protein was not due to the suppression of gene transcription. In addition, the half-life of the Id-1 protein was decreased in both cell lines in the presence of TNFalpha, and the addition of an ubiquitin/proteasome inhibitor (MG-132) prior to the TNFalpha treatment completely blocked the effect of the TNFalpha-induced Id-1 protein degradation. Furthermore, introduction of a Flag-tag sequence into the N-terminus region of the Id-1 protein, which has been shown to stabilize the protein, was able to protect the Id-1 protein from TNFalpha-induced degradation. These results suggest that TNFalpha downregulated Id-1 through activation of the ubiquitin/proteasome degradation pathway in prostate cancer cells. Interestingly, in both DU145 and PC-3 cells, the decrease of Id-1 protein was associated with the activation of apoptotic pathway, as evidenced by the increased expression of cleaved PARP and caspase 3. In addition, TNFalpha failed to downregulate Id-1 in a sub-line of LNCaP cells that was resistant to TNFalpha-induced apoptosis. These results further suggest that the downregulation of Id-1 may facilitate TNFalpha-induced apoptosis in prostate cancer cells. In conclusion, our findings indicate that Id-1 protein may be regulated by TNFalpha through the ubiquitin/proteasome degradation pathway and the stability of the Id-1 protein appears to correlate with the sensitivity of TNFalpha-induced apoptosis.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center