Send to

Choose Destination
Am J Phys Anthropol. 2005 Dec;128(4):823-39.

Morphometric analysis of lumbar vertebrae in extinct Malagasy strepsirrhines.

Author information

Department of Anthropology, University of Texas at Austin, Austin, Texas 78712, USA


Previous research on subfossil lemurs has revealed much about the positional behavior of these extinct strepsirrhines, but a thorough quantitative analysis of their vertebral form and function has not been performed. In this study, 156 lumbar vertebrae of Pachylemur, Archaeolemur, Megaladapis, Mesopropithecus, Babakotia, and Palaeopropithecus (11 species in all) were compared to those of 26 species of extant strepsirrhines and haplorhines. Lumbar shape was compared among species, using a principal components analysis (PCA) in conjunction with selected vertebral indices. The first principal component revealed strong separation between Palaeopropithecus at one extreme, and Archaeolemur/Pachylemur at the other, with Babakotia, Mesopropithecus, and Megaladapis in an intermediate position. Palaeopropithecus has markedly shorter spinous processes and wider laminae than do the other subfossil taxa, consistent with sloth-like, inverted suspensory postures. The moderately reduced lumbar spinous processes of Babakotia, Mesopropithecus, and Megaladapis are convergent with those of lorisids and Pongo, reflecting antipronogrady, but a less specialized adaptation than that of Palaeopropithecus. Archaeolemur and Pachylemur share relatively elongated spinous processes, in conjunction with other features (e.g., transverse process orientation and relatively short vertebral bodies) indicative of pronograde, quadrupedal locomotion characterized by reduced agility. All subfossil taxa exhibit adaptations emphasizing lumbar spinal stability (e.g., relatively short vertebral bodies, and transverse processes that are not oriented ventrally); we believe this probably reflects convergent mechanical demands connected to large body size, irrespective of specific locomotor mode. Reconstructions of positional behavior in subfossil lemurs based on lumbar vertebrae are largely consistent with those based on other aspects of the postcrania.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center