Send to

Choose Destination
See comment in PubMed Commons below
J Bioinform Comput Biol. 2005 Jun;3(3):627-43.

A theoretical analysis of the selection of differentially expressed genes.

Author information

  • 1Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, United Kingdom.


A great deal of recent research has focused on the challenging task of selecting differentially expressed genes from microarray data ("gene selection"). Numerous gene selection algorithms have been proposed in the literature, but it is often unclear exactly how these algorithms respond to conditions like small sample sizes or differing variances. Choosing an appropriate algorithm can therefore be difficult in many cases. In this paper we propose a theoretical analysis of gene selection, in which the probability of successfully selecting differentially expressed genes, using a given ranking function, is explicitly calculated in terms of population parameters. The theory developed is applicable to any ranking function which has a known sampling distribution, or one which can be approximated analytically. In contrast to methods based on simulation, the approach presented here is computationally efficient and can be used to examine the behavior of gene selection algorithms under a wide variety of conditions, even when the number of genes involved runs into the tens of thousands. The utility of our approach is illustrated by comparing three widely-used gene selection methods.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center