Send to

Choose Destination
See comment in PubMed Commons below
Science. 2005 Aug 12;309(5737):1088-90.

In situ stable isotope probing of methanogenic archaea in the rice rhizosphere.

Author information

  • 1College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094, China.


Microorganisms living in anoxic rice soils contribute 10 to 25% of global methane emissions. The most important carbon source for CH4 production is plant-derived carbon that enters soil as root exudates and debris. Pulse labeling of rice plants with 13CO2 resulted in incorporation of 13C into the ribosomal RNA of Rice Cluster I Archaea in the soil, indicating that this archaeal group plays a key role in CH4 production from plant-derived carbon. This group of microorganisms has not yet been isolated but appears to be of global environmental importance.

[PubMed - indexed for MEDLINE]
Free full text

Publication Types, MeSH Terms, Substances, Secondary Source ID

Publication Types

MeSH Terms


Secondary Source ID

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center