Send to

Choose Destination
See comment in PubMed Commons below
Endocrinology. 2005 Nov;146(11):4898-904. Epub 2005 Aug 11.

Permeation of growth hormone across the blood-brain barrier.

Author information

Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, Louisiana 70808, USA.


Exogenous GH can affect central nervous system function when given peripherally to animals and as a supplemental therapy to humans. This study tested whether GH crosses the blood-brain barrier (BBB) by a specific transport system and found that both mice and rats have small but significant uptake of GH into the brain without a species difference. Determined by multiple-time regression analysis, the blood-to-brain influx transfer constants of 125I-labeled rat GH in mice (0.23+/-0.07 microl/g.min) and rats (0.32+/-0.04 microl/g.min) were comparable to those of some cytokines of similar size, with a half-time disappearance of 125I-GH of 3.8-7.6 min in blood. Intact 125I-GH was present in both serum and brain homogenate 20 min after iv injection. At this time, about 26.8% of GH in brain entered the parenchyma, whereas 10% was entrapped in endothelial cells. Neither excess GH nor insulin showed acute modulation of the influx, indicating lack of a saturable transport system for GH at the BBB. Binding and cellular uptake studies in cultured cerebral microvessel endothelial cells (RBE4) further ruled out the presence of high-capacity adsorptive endocytosis. The brain influx of GH by simple diffusion adds definitive value to the long-disputed question of whether and how GH crosses the BBB. The central nervous system effects of peripheral GH can be attributed to permeation of the BBB despite the absence of a specific transport system.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems
    Loading ...
    Support Center