Send to

Choose Destination
See comment in PubMed Commons below
Neurobiol Dis. 2006 Jan;21(1):217-27. Epub 2005 Aug 8.

Hippocampal synaptic plasticity is impaired in the Mecp2-null mouse model of Rett syndrome.

Author information

  • 1Department of Cellular and Molecular Physiology, Yale University School of Medicine, PO Box 208026, New Haven, CT 06520, USA.


Rett syndrome is an X-linked neurodevelopmental disorder caused by mutations in the gene encoding the transcriptional repressor methyl-CpG-binding protein 2 (MeCP2). Here we demonstrate that the Mecp2-null mouse model of Rett syndrome shows an age-dependent impairment in hippocampal CA1 long-term potentiation induced by tetanic or theta-burst stimulation. Long-term depression induced by repetitive low-frequency stimulation is also absent in behaviorally symptomatic Mecp2-null mice. Immunoblot analyses from behaviorally symptomatic Mecp2-null mice reveal altered expression of N-methyl-d-aspartate receptor subunits NR2A and NR2B. Presynaptic function is also affected, as demonstrated by a significant reduction in paired-pulse facilitation. Interestingly, the properties of basal neurotransmission are normal in the Mecp2-null mice, consistent with our observations that the levels of expression of synaptic and cytoskeletal proteins, including glutamate receptor subunits GluR1 and GluR2, PSD95, synaptophysin-1, synaptobrevin-2, synaptotagmin-1, MAP2, betaIII-tubulin and NF200, are not significantly altered. Together, these data provide the first evidence that the loss of Mecp2 expression is accompanied by age-dependent alterations in excitatory synaptic plasticity that are likely to contribute to the cognitive and functional deficits underlying Rett syndrome.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center