Format

Send to

Choose Destination
See comment in PubMed Commons below
Acad Radiol. 2005 Aug;12(8):948-56.

Interobserver and intraobserver variability in the assessment of pulmonary nodule size on CT using film and computer display methods.

Author information

1
Department of Radiology, University of Michigan Medical School, Ann Arbor, 48109-0326, USA.

Abstract

RATIONALE AND OBJECTIVES:

A critical element in determining biologic behavior of pulmonary nodules is volume and temporal volume change. We evaluate variability in nodule volume among readers and measuring methods.

MATERIALS AND METHODS:

55 small (<2 cm) lung nodules were measured in long- and short-axis dimensions independently by 4 radiologists, using 3 methods: 1) hard copy, 2) GE Advantage Windows workstation (GE Healthcare, Milwaukee, WI), 3) Siemens IMACS workstation (Siemens Medical Systems, Iselan, NJ). Nodule margin was recorded as smooth, lobulated, or spiculated. Volume was calculated from diameter measurements. Variability in nodule volume was evaluated within each reader, between readers, and across measurement tools.

RESULTS:

Mean nodule short-axis diameter was 5.3 mm; mean long-axis diameter 7.2 mm. There was statistically significant variation among readers and measurement method for nodule volume. Volume was significantly larger using hard-copy measurements (51.9%-54.1% variation; P < .0001) than either workstation, and not different between workstations. There was greater intraobserver variability in volume using the hard-copy method, and no difference between workstation methods. Volumes based on measurements from one reader were consistently lower than those from other readers (P = < .001, .003, and .02); volume was consistently larger for another reader (P < .0001, .03, and .12). Reader agreement for nodule margin was good to excellent.

CONCLUSION:

Considerable interobserver and intraobserver variability in measuring nodules exists using hard-copy and computer tools. Since a small change in diameter indicates a much larger change in volume, this may be significant when using early repeat CT to follow small pulmonary nodules. Computer-aided diagnostic tools that reproducibly measure nodule volume are strongly needed.

PMID:
16087090
DOI:
10.1016/j.acra.2005.04.009
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center