Format

Send to

Choose Destination
See comment in PubMed Commons below
Int J Biochem Cell Biol. 2005 Dec;37(12):2536-43. Epub 2005 Jul 14.

Activity of yeast multidrug resistance pumps during growth is controlled by carbon source and the composition of growth-depleted medium: DiS-C3(3) fluorescence assay.

Author information

1
Charles University, Faculty of Mathematics and Physics, Institute of Physics, Ke Karlovu 5, 12116 Prague 2, Czech Republic.

Abstract

Like other tested wild-type strains (DTXII and IL-125-2B), exponential glucose- and/or fructose-grown cells of Saccharomyces cerevisiae BY4742 exhibit the previously described high activity of Pdr5p and Snq2p pumps (measured as export of the potentiometric fluorescent probe diS-C3(3)). Upon saccharide depletion from the medium the pump activity in these cells, which differ from other strains in having a lower membrane potential, sharply drops to a very low level similar to that found in cells grown on ethanol or glycerol. This negligible pump activity in respiring cells thus appears to have a universal character. Addition of glucose or fructose to respiring BY4742 cells grown to low culture densities restores multidrug resistance pump activity due partly to pump synthesis in pre-existing cells and partly to the high pump activity of newly grown cells; no such pump activity boost occurs when the sugar is added to high-density cultures of ethanol-grown or post-diauxic glucose-grown cells, even if these cultures are diluted to low density by their original growth-depleted medium. A strong sugar-induced increase in pump activity is found solely if respiring cells from high-density cultures are resuspended in fresh YPD or YPE medium before sugar addition. Its absence in respiring cells suspended in growth-depleted medium reflects an as yet unidentified effect of the composition of the growth-exhausted medium (depletion of some components and/or accumulation of extracellular metabolites during yeast growth) on sugar-induced pump activity rise.

PMID:
16061415
DOI:
10.1016/j.biocel.2005.06.005
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center