Send to

Choose Destination
FEMS Microbiol Lett. 2005 Sep 1;250(1):85-95.

Transcriptome analysis of the Mg2+-responsive PhoP regulator in Yersinia pestis.

Author information

Laboratory of Analytical Microbiology, State Key laboratory of Pathogen and Biosecurity, National Center for Biomedical Analysis, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China.


PhoP was previously shown to be important for Yersinia pestis survival in macrophage and under macrophage-induced stresses. In this work, a phoP disruptant of Y. pestis 201 was generated using the Red cloning procedure. The transcription profile of the wild-type Y. pestis was then compared with that of the phoP mutant under Mg2+-limiting conditions. It was revealed that PhoP/PhoQ governed a wide set of cellular pathways in Y. pestis, especially including the positive regulation of many metabolic processes, Mg2+ transport, peptidoglycan remodeling, lipopolysaccharide (LPS) modification and various stress-protective functions. The Mg2+ transport system regulated by PhoP may make Y. pestis to maintain the magnesium homeostasis under low Mg2+ environments. The PhoP-controlled stress-protective functions likely constitute the molecular basis for the observation that mutation of the phoP gene rendered the bacteria more sensitive to various macrophage-induced stresses. Modification of LPS mediated by PhoP is hypothesized to not only neutralize negative charges as normally done by Mg2+ ions, but also mediate the resistance of Y. pestis to antimicrobial peptides. The microarray results provide a population of candidate genes or pathways, and further biochemical experiments are needed to elucidate the PhoP-dependent mechanisms by which Y. pestis survives the antibacterial strategies employed by host macrophages.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Silverchair Information Systems Icon for Wiley
Loading ...
Support Center