Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biomech Eng. 2005 Jun;127(3):364-73.

Subject-specific finite element model of the pelvis: development, validation and sensitivity studies.

Author information

1
Department of Bioengineering, University of Utah, 50 South Central Campus Drive, Room 2480, Salt Lake City, UT, USA.

Abstract

A better understanding of the three-dimensional mechanics of the pelvis, at the patient-specific level, may lead to improved treatment modalities. Although finite element (FE) models of the pelvis have been developed, validation by direct comparison with subject-specific strains has not been performed, and previous models used simplifying assumptions regarding geometry and material properties. The objectives of this study were to develop and validate a realistic FE model of the pelvis using subject-specific estimates of bone geometry, location-dependent cortical thickness and trabecular bone elastic modulus, and to assess the sensitivity of FE strain predictions to assumptions regarding cortical bone thickness as well as bone and cartilage material properties. A FE model of a cadaveric pelvis was created using subject-specific computed tomography image data. Acetabular loading was applied to the same pelvis using a prosthetic femoral stem in a fashion that could be easily duplicated in the computational model. Cortical bone strains were monitored with rosette strain gauges in ten locations on the left hemipelvis. FE strain predictions were compared directly with experimental results for validation. Overall, baseline FE predictions were strongly correlated with experimental results (r2=0.824), with a best-fit line that was not statistically different than the line y=x (experimental strains = FE predicted strains). Changes to cortical bone thickness and elastic modulus had the largest effect on cortical bone strains. The FE model was less sensitive to changes in all other parameters. The methods developed and validated in this study will be useful for creating and analyzing patient-specific FE models to better understand the biomechanics of the pelvis.

PMID:
16060343
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems
    Loading ...
    Support Center