Format

Send to

Choose Destination
See comment in PubMed Commons below
Toxicol In Vitro. 2006 Feb;20(1):63-70. Epub 2005 Jul 27.

Expressions of galectin-3, glutathione S-transferase A2 and peroxiredoxin-1 by nonylphenol-incubated Caco-2 cells and reduction in transepithelial electrical resistance by nonylphenol.

Author information

  • 1Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba Science City, Ibaraki 305-8572, Japan. isoda@sakura.cc.tsukuba.ac.jp

Abstract

Nonylphenol, an estrogenic xenobiotic widely used in the manufacture of plastics and detergents, has been found in drinking water and may therefore enter the body through the oral route. Thus, intestinal cells lining the alimentary tract serve as the body's first line of defense against this compound. In this study, the effects of nonylphenol on the human intestinal cell line Caco-2 were determined using transepithelial electrical resistance (TEER) measurement and proteomics. Results show that 10 microM nonylphenol can disrupt the tight-junction permeability of Caco-2 cells in approximately 15 min. Incubating the cells with 1 or 10 microM nonylphenol for 6 days resulted in the enhanced expressions of galectin-3 (approximately 4-fold vs. control with 1 microM; 2-fold with 10 microM), glutathione S-transferase A2 (approximately 8-fold with 1 microM; 5-fold with 10 microM) and peroxiredoxin-1 (approximately 6-fold with 1 microM; 4-fold with 10 microM). These expressions may represent a possible consortium of mechanisms by which the cells protect themselves against nonylphenol-induced stresses. To the best of our knowledge, this is the first study on the effects of nonylphenol on Caco-2 cells.

PMID:
16054331
DOI:
10.1016/j.tiv.2005.06.004
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center