Format

Send to

Choose Destination
Drug Saf. 2005;28(8):659-76.

The effect of HMG-CoA reductase inhibitors on coenzyme Q10: possible biochemical/clinical implications.

Author information

1
Neurometabolic Unit, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK. iain.hargreaves@uclh.org

Abstract

The HMG-CoA reductase inhibitors, also known as statins, have an enviable safety profile; however, myotoxicity and to a lesser extent hepatotoxicity have been noted in some patients following treatment. Statins target several tissues, depending upon their lipophilicity, where they competitively inhibit HMG-CoA reductase, the rate-limiting enzyme for mevalonic acid synthesis and subsequently cholesterol biosynthesis. HMG-CoA reductase is also the first committed rate-limiting step for the synthesis of a range of other compounds including steroid hormones and ubidecarenone (ubiquinone), otherwise known as coenzyme Q(10) (CoQ(10)). Recent interest has focused on the possible role CoQ(10) deficiency may have in the pathophysiology of the rare adverse effects of statin treatment. Currently, there is insufficient evidence from human studies to link statin therapy unequivocally to pathologically significantly decreased tissue CoQ(10) levels. Although statin treatment has been reported to lower plasma/serum CoQ(10) status, few human studies have assessed tissue CoQ(10) status. The plasma/serum CoQ(10) level is influenced by a number of physiological factors and, therefore, has limited value as a means of assessing intracellular CoQ(10) status. In those limited studies that have assessed the effect of statin treatment upon tissue CoQ(10) levels, none have shown evidence of a fall in CoQ(10) levels. This may reflect the doses of statins used, since many appear to have been used at doses below those recommended for their maximum therapeutic effects. Moreover, the poor bioavailability in those peripheral tissues tested may not reflect the effects the agents are having in liver and muscle, the tissues commonly affected in those patients who do not tolerate statins. This article reviews the biochemistry of CoQ(10), its role in cellular metabolism and the available evidence linking possible CoQ(10) deficiency to statin therapy.

PMID:
16048353
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center