Format

Send to

Choose Destination
See comment in PubMed Commons below
Ageing Res Rev. 2005 Aug;4(3):339-50.

Why dietary restriction substantially increases longevity in animal models but won't in humans.

Author information

1
Life Sciences Core Curriculum Program, UCLA, Los Angeles, CA 90095-1606, USA. jay@ucla.edu

Abstract

Caloric restriction (CR) extends maximum longevity and slows aging in mice, rats, and numerous non-mammalian taxa. The apparent generality of the longevity-increasing effects of CR has prompted speculation that similar results could be obtained in humans. Longevity, however, is not a trait that exists in a vacuum; it evolves as part of a life history and the physiological mechanisms that determine longevity are undoubtedly complex. Longevity is intertwined with reproduction and there is a cost to reproduction. The impact of this cost on longevity can be age-independent or age-dependent. Given the complexity of the physiology underlying reproductive costs and other mechanisms affecting life history, it is difficult to construct a simple model for the relationship between the particulars of the physiology involved and patterns of mortality. Consequently, we develop a hypothesis-neutral model describing the relationship between diet and longevity. Applying this general model to the special case of human longevity and diet indicates that the benefits of caloric restriction in humans would be quantitatively small.

PMID:
16046282
DOI:
10.1016/j.arr.2005.06.001
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center