Format

Send to

Choose Destination
See comment in PubMed Commons below
Proteins. 2005 Oct 1;61(1):105-14.

The folding landscape of an alpha-lytic protease variant reveals the role of a conserved beta-hairpin in the development of kinetic stability.

Author information

1
Graduate Program in Chemistry and Chemical Biology, University of California, San Francisco 94143-2240, USA.

Abstract

Most secreted bacterial proteases, including alpha-lytic protease (alphaLP), are synthesized with covalently attached pro regions necessary for their folding. The alphaLP folding landscape revealed that its pro region, a potent folding catalyst, is required to circumvent an extremely large folding free energy of activation that appears to be a consequence of its unique unfolding transition. Remarkably, the alphaLP native state is thermodynamically unstable; a large unfolding free energy barrier is solely responsible for the persistence of its native state. Although alphaLP folding is well characterized, the structural origins of its remarkable folding mechanism remain unclear. A conserved beta-hairpin in the C-terminal domain was identified as a structural element whose formation and positioning may contribute to the large folding free energy barrier. In this article, we characterize the folding of an alphaLP variant with a more favorable beta-hairpin turn conformation (alphaLP(beta-turn)). Indeed, alphaLP(beta-turn) pro region-catalyzed folding is faster than that for alphaLP. However, instead of accelerating spontaneous folding, alphaLP(beta-turn) actually unfolds more slowly than alphaLP. Our data support a model where the beta-hairpin is formed early, but its packing with a loop in the N-terminal domain happens late in the folding reaction. This tight packing at the domain interface enhances the kinetic stability of alphaLP(beta-turn), to nearly the same degree as the change between alphaLP and a faster folding homolog. However, alphaLP(beta-turn) has impaired proteolytic activity that negates the beneficial folding properties of this variant. This study demonstrates the evolutionary limitations imposed by the simultaneous optimization of folding and functional properties.

PMID:
16044461
DOI:
10.1002/prot.20525
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center