Send to

Choose Destination
Microb Cell Fact. 2005 Jul 21;4:22.

An encoded N-terminal extension results in low levels of heterologous protein production in Escherichia coli.

Author information

Department of Biology, San Diego State University, San Diego, CA 92182, USA.



The tdk gene (encoding deoxythymidine kinase) of the gamma-proteobacterium Xenorhabdus nematophila has two potential translation start sites. The promoter-distal start site was predicted to be functional based on amino acid sequence alignment with closely related Tdk proteins. However, to experimentally determine if either of the two possible start codons allows production of a functional Tdk, we expressed the "long-form" (using the promoter-proximal start codon) and "short-form" (using the promoter-distal start codon) X. nematophila tdk genes from the T7 promoter of the pET-28a(+) vector. We assessed Tdk production and activity using a functional assay in an Escherichia coli tdk mutant, which, since it lacks functional Tdk, is able to grow in 5-fluorodeoxyuridine (FUdR)-containing medium.


Short-form Tdk complemented the E. coli tdk mutant strain, resulting in FUdR sensitivity of the strain. However, the E. coli tdk mutant expressing the long form of tdk remained FUdR resistant, indicating it did not have a functional deoxythymidine kinase enzyme. We report that long-form Tdk is at least 13-fold less abundant than short-form Tdk, the limited protein produced was as stable as short-form Tdk and the long-form transcript was 1.7-fold less abundant than short-form transcript. Additionally, we report that the long-form extension was sufficient to decrease heterologous production of a different X. nematophila protein, NilC.


We conclude that the difference in the FUdR growth phenotype between the E. coli tdk mutant carrying the long-or short-form X. nematophila tdk is due to a difference in Tdk levels. The lower long-form protein level does not result from protein instability, but instead from reduced transcript levels possibly combined with reduced translation efficiency. Because the observed effect of the encoded N-terminal extension is not specific to Tdk production and can be overcome with induction of gene expression, these results may have particular relevance to researchers attempting to limit production of toxic proteins under non-inducing conditions.

Supplemental Content

Full text links

Icon for BioMed Central Icon for PubMed Central
Loading ...
Support Center