Send to

Choose Destination
See comment in PubMed Commons below
Br J Pharmacol. 2005 Oct;146(3):344-51.

Novel polyisoprenyl phosphates block phospholipase D and human neutrophil activation in vitro and murine peritoneal inflammation in vivo.

Author information

Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.


Leukocyte production of reactive oxygen species (ROS) is an essential component of the antimicrobial armament mounted during host defense, but when released to the extracellular milieu ROS can also injure host tissues and provoke inflammation. Polyisoprenyl phosphates (PIPPs) are constituents of human leukocyte membranes that regulate pivotal intracellular enzymes, such as phospholipase D (PLD). We prepared new PIPP mimetics and studied their impact in vivo on leukocyte activation, including ROS generation, in acute inflammation. In a stereospecific and concentration-dependent manner, the PIPP mimetics directly regulated Streptomyces chromofuscus phospholipase D (sPLD) action. The IC(50) for a (Z)-isomer of endogenous presqualene diphosphate (PSDP) was 100 nM. Structure-activity relationships were also determined for PIPP mimetic inhibition of recombinant human PLD1b, a prominent isoform in human leukocytes. The PIPP mimetic rank order for PLD1b inhibition differed from sPLD, although the (Z)-PSDP isomer remained the most potent PIPP mimetic for inhibition of both enzymes. Truncation of PLD1b to its catalytic core uncovered potential regulatory roles for both PSDP's isoprenoid and diphosphate moieties. The (Z)-PSDP isomer reduced ROS production by activated human leukocytes and decreased murine neutrophil accumulation (65.6%) and ROS production (38.5%) in vivo during zymosan A-initiated peritonitis. When administered intraperitoneally 2 h after zymosan A, the (Z)-PSDP isomer decreased in vivo neutrophil accumulation (72.5%) and ROS generation (74.4%) 6 h later in peritoneal exudates. Together, these results provide new means to protect and control unchecked inflammatory responses that characterize many human diseases.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Support Center