Send to

Choose Destination
Neuroimage. 2005 Oct 15;28(1):140-53. Epub 2005 Jul 21.

Localization of human supratemporal auditory areas from intracerebral auditory evoked potentials using distributed source models.

Author information

Inserm Unité 280, Bron, France.


While source localization methods are increasingly developed to identify brain areas underlying scalp electro/magnetoencephalographic data (EEG/MEG), these methods have not yet been used to identify the sources of intracerebral signals which offer highly detailed information. Here, we adapted the minimum current estimates method to intracranial data in order to localize supratemporal sources of intracerebral auditory 1-kHz-tone-evoked potentials occurring within 100 ms after stimulus onset. After an evaluation of localization method and despite inter-subject variability, we found a common spatiotemporal pattern of activities, which involved the first Heschl's gyrus (H1) and sulcus (HS), the Planum Temporale (PT), H2/H3 when present, and the superior temporal gyrus (STG). Four time periods of activity were distinguished, corresponding to the time range of the scalp components P0, Na, Pa/Pb, and N100. The sources of the earliest components P0 (16-19 ms) and Na (20-25 ms) could be identified in the postero-medial portion of HS or H1. Then, several areas became simultaneously active after 25 ms. The Pa/Pb time range (30-50 ms) was characterized by a medio-lateral and postero-anterior propagation of activity over the supratemporal plane involving successively H1/HS, the Planum Temporale, H2/H3 when present, and the STG. Finally, we found to a large extent that the N100 (55-100 ms) involved almost the same areas as those active during the Pa/Pb complex, with a similar propagation of activities. Reconstructing scalp data from these sources on fictive EEG/MEG channels reproduced classical auditory evoked waveforms and topographies. In conclusion, the spatiotemporal pattern of activation of supratemporal auditory areas could be identified on the individual anatomy using current estimates from intracerebral data. Such detailed localization approach could also be used prior to epilepsy surgery to help identify epileptogenic foci and preserve functional cortical areas.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center