Send to

Choose Destination
See comment in PubMed Commons below
Proteins. 1992 Feb;12(2):158-70.

Domain flexibility in aspartic proteinases.

Author information

  • 1Department of Crystallography, Birkbeck College, University of London, England.


Comparison of the three-dimensional structures of native endothiapepsin (EC and 15 endothiapepsin oligopeptide inhibitor complexes defined at high resolution by X-ray crystallography shows that endothiapepsin exists in two forms differing in the relative orientation of a domain comprising residues 190-302. There are relatively few interactions between the two parts of the enzyme; consequently, they can move as separate rigid bodies. A translational, librational, and screw analysis of the thermal parameters of endothiapepsin also supports a model in which the two parts can move relative to each other. In the comparison of different aspartic proteinases, the rms values are reduced by up to 47% when the two parts of the structure are superposed independently. This justifies description of the differences, including those between pepsinogen and pepsin (EC, as a rigid movement of one part relative to another although considerable distortions within the domains also occur. The consequence of the rigid body movement is a change in the shape of the active site cleft that is largest around the S3 pocket. This is associated with a different position and conformation of the inhibitors that are bound to the two endothiapepsin forms. The relevance of these observations to a model of the hydrolysis by aspartic proteinases is briefly discussed.

[PubMed - indexed for MEDLINE]

LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center