Format

Send to

Choose Destination
J Asthma. 2005 Jun;42(5):305-14.

Dietary omega-3 polyunsaturated fatty acid supplementation and airway hyperresponsiveness in asthma.

Author information

1
Department of Kinesiology, Indiana University, Bloomington, Indiana 47401, USA. tmickleb@indiana.edu

Abstract

Asthma prevalence continues to increase despite the progress that has been made in the treatment options for asthma. Alternative treatment therapies that reduce the dose requirements of pharmacological interventions would be beneficial, and could potentially reduce the public health burden of this disease. There is accumulating evidence that dietary modification has potential to influence the severity of asthma and reduce the prevalence and incidence of this condition. A possible contributing factor to the increased incidence of asthma in Western societies may the consumption of a pro-inflammatory diet. In the typical Western diet, 20-25-fold more omega (n)-6 polyunsaturated fatty acids (PUFA) than n-3 PUFA are consumed, which results in the release of pro-inflammatory arachidonic acid metabolites. Eicosapentaenoic acid and docosahexaenoic acid are n-3 PUFA derived from fish oil that competitively inhibit n-6 PUFA arachidonic acid (AA) metabolism and this reduce the generation of pro-inflammatory 4-series leukotrienes (LTs) and 2-series prostaglandins (PGs) and production of cytokines from inflammatory cells. These data are consistent with the proposed pathway by which dietary intake of n-3 PUFA modulates lung disease. This article will review the existing information concerning the relationship between n-3 PUFA supplementation and airway hyperresponsiveness in asthma. It includes studies assessing the efficacy of n-3 PUFA supplementation in exercise-induced bronchoconstriction. This review will also address the question as to whether supplementing the diet with n-3 PUFA represents a viable alternative treatment regimen for asthma.

PMID:
16036405
DOI:
10.1081/JAS-62950
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Taylor & Francis
Loading ...
Support Center