Send to

Choose Destination
Insect Mol Biol. 2005 Aug;14(4):353-63.

SINE insertion polymorphism on the X chromosome differentiates Anopheles gambiae molecular forms.

Author information

Center for Tropical Disease Research and Training, Department of Biological Sciences, University of Notre Dame, IN 46556, USA.


Polymorphic SINE insertions can be useful markers for assessing population structure and differentiation. Maque is a family of SINE elements which, based on bioinformatic analysis, was suggested to have been active recently in Anopheles gambiae, the major vector of malaria. Here, we report the development of polymorphic Maque insertions as population genetic markers in A. gambiae, and the use of these markers to better characterize divergence on the X chromosome between A. gambiae M and S molecular forms in populations from Burkina Faso and Mali. Our data are consistent with the recent activity of Maque. Phylogenetic analysis suggests that at least two recently active lineages may have a role in mediating genome evolution. We found differences in element insertion frequency and sequence between the M and S populations analysed. Significant differentiation was observed between these two groups across a 6 Mb region at the proximal (centromeric) end of the X chromosome. Locus-specific F(ST) values ranged from 0.14 to 1.00 in this region, yet were not significantly different from zero in more distal locations on the X chromosome; the trend was consistent in populations from both geographical locales suggesting that differentiation is not due to local adaptation. Strong differentiation between M and S at the proximal end of the X chromosome, but not outside this region, suggests the action of selection counteracting limited gene flow between these taxa and supports their characterization as incipient species.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center