Send to

Choose Destination
Environ Geochem Health. 2005 Dec;27(4):289-300.

Stabilization of metals in acidic mine spoil with amendments and red fescue (Festuca rubra L.) growth.

Author information

Technical and Agricultural Faculty, Department of Land and Environmental Management, College of Nyíregyháza, H-4401 Nyíregyháza, P.O. Box 166, Hungary.


Stabilization of metals with amendments and red fescue (Festuca rubra, cv. Keszthelyi 2) growth was studied on an acidic and phytotoxic mine spoil (pH(KCl) 3.20-3.26; Cd 7.1 mg kg(-1), Cu 120 mg kg(-1), Pb 2154 mg kg(-1) and Zn 605 mg kg(-1)) from Gyöngyösoroszi, Hungary in a pot experiment. Raising the pH above 5.0 by lime (CaCO(3)), and supplementing with 40 mg kg(-1)nitrogen (NH(4)NO(3)) made this material suitable for plant growth. All cultures were limed with 0.5% (m/m) CaCO(3) (treatment 1), which was combined with 5% (m/m) municipal sewage sludge compost (treatment 2), 5% (m/m) peat (treatment 3), 7.5% (m/m) natural zeolite (clinoptilolite) (treatment 4), and 0.5 (m/m) KH(2)PO(4) (treatment 5). Treatments 1-5 were combined with each other (treatment 6). After 60 days of red fescue growth, pH of the limed mine spoil decreased in all cultures units. Application of peat caused the highest pH decrease (1.15), while decrease of pH was less than 0.23 in treatments 2, 5 or 6. Application of lime significantly reduced concentrations of metals in the 'plant available' fraction of mine spoil compared to non-limed mine spoil. Amendments added to limed mine spoil changed variously the ratio of Cd, Cu, Pb and Zn in exchangeable or 'plant available' fractions, differently influencing the phytoavailability of these metals. Most of the metals were captured in the roots of test plants. Treatment 2 caused the appearance of less Cd in shoots (<0.1 microg g(-1)) or roots (3.11 microg g(-1)), while treatment 5 resulted in the highest Cd concentration (2.13 microg g(-1)) in shoots. Treatments did not influence significantly the Cu accumulation in shoots. The Pb accumulation of roots (44.7 microg g(-1)) was most effectively inhibited by combined treatment, while the highest value (136 microg g(-1)) was found in the culture treated with potassium phosphate. Pb concentration in shoots was below the detection limit, except for treatments 5 and 6. Peat application resulted in higher Zn concentration (448 microg g(-1)) in shoots than other amendments, where these values were around 100 microg g(-1). All amendments influenced positively the dry matter yield of red fescue grown in limed mine spoil, however the application of 0.5 phosphate was less favourable. Liming, application of amendments and growth of red fescue can stabilize metals in acidic and phytotoxic mine spoil, and by phytostabilization they can reduce the risk of metal contamination of the food chain.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center