Send to

Choose Destination
Dev Growth Differ. 2005 Jun;47(5):307-21.

Cloning and characterization of a phospholipase C-beta isoform from the sea urchin Lytechinus pictus.

Author information

Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011, USA.


Calcium is a ubiquitous intracellular signaling molecule controlling a wide array of cellular processes including fertilization and egg activation. The mechanism for triggering intracellular Ca(2+) release in sea urchin eggs during fertilization is the generation of inositol-1,4,5-trisphosphate by phospholipase C (PLC) hydrolysis of phosphatidylinositol-4,5-bisphosphate. Of the five PLC isoforms identified in mammals (beta, gamma, delta, epsilon and zeta), only PLCgamma and PLCdelta have been detected in echinoderms. Here, we provide direct evidence of the presence of a PLCbeta isoform, named suPLCbeta, within sea urchin eggs. The coding sequence was cloned from eggs of Lytechinus pictus and determined to have the greatest degree of homology and identity with the mammalian PLCbeta4. The presence of suPLCbeta within the egg was verified using a specifically generated antibody. The majority of the enzyme is localized in the non-soluble fraction, presumably the plasma membrane of the unfertilized egg. This distribution remains unchanged 1 min postfertilization. Unlike PLCbeta4, suPLCbeta is activated by G protein betagamma subunits, and this activity is Ca(2+)-dependent. In contrast to all known PLCbeta enzymes, suPLCbeta is not activated by Galphaq-GTPgammaS subunit suggesting other protein regulators may be present in sea urchin eggs.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center