Format

Send to

Choose Destination
J Cell Physiol. 2006 Jan;206(1):221-8.

CCL18-stimulated upregulation of collagen production in lung fibroblasts requires Sp1 signaling and basal Smad3 activity.

Author information

1
Department of Medicine, University of Maryland School of Medicine, Baltimore VA Medical Center, Baltimore, Maryland 21201, USA. iluzina@umaryland.edu

Abstract

A CC chemokine CCL18 stimulates collagen production in pulmonary fibroblasts through an unknown signaling mechanism. In this study, involvement of Sp1 and Smad3 in CCL18 signaling in primary human pulmonary fibroblast cultures was investigated. Phosphorylation of Sp1, DNA-binding by Sp1, and the activity of an Sp1-dependent reporter were all increased in response to CCL18 stimulation. CCL18 did not stimulate a detectable increase in Smad3 phosphorylation or Smad3/4 DNA-binding activity, although some basal phosphorylation and DNA binding by Smad3/4 were noted. Transient overexpression of dominant negative mutants of Sp1 and Smad3 abrogated CCL18-dependent upregulation as well as basal production of collagen. These observations suggested that CCL18 activates collagen production in pulmonary fibroblasts through an Sp1-dependent pathway that also requires basal Smad3 activity. Possible involvement of autocrine TGF-beta in CCL18 signaling was considered. CCL18 stimulated increases in collagen mRNA and protein production without detectable changes in TGF-beta1, -beta2, and -beta3 mRNA or protein levels. Neutralizing anti-TGF-beta antibodies, latency-associated peptide, ALK5-specific inhibitor SD431542, and an inhibitor of the protease-dependent TGF-beta activation aprotinin, each failed to block CCL18-stimulated collagen production. These observations suggest that both CCL18 signaling in pulmonary fibroblasts and basal Smad3 activity are independent of autocrine TGF-beta.

PMID:
16021625
DOI:
10.1002/jcp.20452
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center