Format

Send to

Choose Destination
See comment in PubMed Commons below
J Virol. 2005 Aug;79(15):9572-8.

Comparative selection of the K65R and M184V/I mutations in human immunodeficiency virus type 1-infected patients enrolled in a trial of first-line triple-nucleoside analog therapy (Tonus IMEA 021).

Author information

1
Laboratoire de Virologie, Hôpital Bichat-Claude Bernard, Paris, France.

Abstract

Tonus was a pilot study in which previously untreated human immunodeficiency virus type 1 (HIV-1)-infected patients received the combination of abacavir, lamivudine, and tenofovir once a day. There was a high rate of early virological failure, and the M184V and K65R mutations were frequently detected at week 12 (W12). The objective of this study was to examine the selection dynamics of the K65R and M184V/I mutations. Bulk sequencing of the reverse transcriptase (RT) gene was performed on plasma HIV-1 RNA at baseline, W4, and W12 for 21 patients with detectable viral loads. The RT genes from baseline, W4, and W12 plasma samples from five patients who developed both M184V and K65R but with different mutational patterns were also cloned and screened for the K65R mutation by selective real-time PCR. At baseline, bulk sequencing and clonal analysis showed only wild-type RT sequences. At W4, M184V/I was detected in 12/19 patients and K65K/R in 2 patients by bulk sequencing. At W12, M184V/I was found in 18/20 patient, together with the K65R in 13 patients. At W4, clonal analysis revealed the K65R mutation in 0.6 to 48% of clones in the five patients studied. At W12, the K65R mutation was found in 30 to 100% of clones. K65R and M184V/I seemed to arise in separate clones, followed by an enrichment of viruses containing both mutations. The clinical relevance of this independent evolution is unclear. M184V/I was selected more frequently than K65R at W4. However, K65R was also detected early using a clone-sensitive genotyping method. All three nucleoside analogs are known to select the K65R and/or M184V/I mutation. This convergent genetic pathway to resistance, associated with lower antiretroviral potency, may explain the high selection rate of these mutations in this trial.

PMID:
16014919
PMCID:
PMC1181609
DOI:
10.1128/JVI.79.15.9572-9578.2005
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center