Format

Send to

Choose Destination
See comment in PubMed Commons below
Anal Chem. 2005 Jul 15;77(14):4640-8.

Potentiality of gas chromatography-triple quadrupole mass spectrometry in vanguard and rearguard methods of pesticide residues in vegetables.

Author information

1
Department of Analytical Chemistry, University of Almería, 04071 Almería, Spain.

Abstract

A new analytical strategy for the screening and confirmation/quantification of multiclass pesticide residues in vegetables has been established and validated. No complicated sample preparation was needed, but only a simple and rapid extraction using ethyl acetate and sodium sulfate, which required no cleanup. The approach is based on the use of the triple quadrupole (QqQ) mass spectrometry (MS) as detection system in gas chromatography (GC). In a first step, a GC-QqQ-MS screening method, which monitors only one MS/MS transition by compound, allows the identification of approximately 130 pesticides in 11.6 min. In this way, the differentiation between negative and potentially nonnegative samples is carried out. In the second step, the nonnegative samples are reanalyzed by the GC-QqQ-MS confirmation/quantification method, which monitors two or three MS/MS transitions by compound. Confirmation of pesticides was based on the comparison of intensity ratios for the main ions in samples with those obtained on the same day from the standard in a matrix containing the pesticides at a preestablished concentration level. Quantification of the identified and confirmed pesticides was based on the addition standard method, which avoids matrix effect. The proposed analytical strategy allowed a reliable identification and confirmation of the target pesticides at trace levels, reducing analysis time and increasing sample throughput in routine analytical laboratories.

PMID:
16013883
DOI:
10.1021/ac050252o
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center