Send to

Choose Destination
Chromosoma. 2005 Sep;114(4):242-51. Epub 2005 Oct 15.

Control of gene expression and assembly of chromosomal subdomains by chromatin regulators with antagonistic functions.

Author information

Department of Genetics and Genomics, Boston University School of Medicine, 715 Albany Street, E-645, Boston, MA 02118, USA.


Epigenetic regulation of higher-order chromatin structure controls gene expression and the assembly of chromosomal domains during cell division, differentiation, and development. The proposed "histone code" integrates a complex system of histone modifications and chromosomal proteins that establish and maintain distinctive types of chromatin, such as euchromatin, heterochromatin, and centromeric (CEN) chromatin. The reversible nature of histone acetylation, phosphorylation, and (most recently discovered) methylation are mechanisms for controlling gene expression and partitioning the genome into functional domains. Many different regions of the genome contain similar epigenetic marks (histone modifications), raising the question as to how they are independently specified and regulated. In this review, we will focus on several recent discoveries in chromatin and chromosome biology: (1) identification of long-elusive histone "de-methylating" enzymes that affect chromatin structure, and (2) assembly and maintenance of chromatin domains, specifically heterochromatin and euchromatin, through a dynamic equilibrium of modifying enzymes, histone modifications, and histone variants identified biochemically and genetically.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center